LEARNER OUTCOMES

- Discuss the interaction between intracranial pathophysiology, cerebral perfusion and general anesthesia.
- Summarize the fast-track technique for neuroanesthesia

CEREBRAL ISCHEMIA

- Result of diminished blood and/or oxygen supply to the brain
- Divided into three categories
 - Reversible or irreversible
 - Complete or incomplete
 - Global vs. focal
- Certain areas more susceptible than others to injury

CEREBRAL PHYSIOLOGY

- CMRO₂ – Cerebral Metabolic Rate of Oxygen
- CBF – Cerebral Blood Flow
- CPP – Cerebral Perfusion Pressure
- ICP – Intracranial Pressure

CEREBRAL PHYSIOLOGY

- Cerebral O₂ Consumption (CMRO₂)
 - Comprises 20% of total body O₂ consumption (250 ml O₂/min)
 - CMRO₂ greatest in grey matter
 - CMRO₂ = 3.0-3.8 ml/100g/min (50 ml/min)
 - Physiologic effects
 - Mentally alert: 3.5 ml/100g/min
 - Mentally confused: 2.8 ml/100g/min
 - Comatose: 2.0 ml/100g/min
CEREBRAL PHYSIOLOGY

• Cerebral Blood Flow (CBF)
 • Parallels Metabolic Activity
 - $1 \text{CMR} = 1 \text{CMRO}_2 = 1 \text{CBF}$
 • Normal CBF: 50-55 ml/100g Of Brain Tissue/Minute
 • 15% Of Cardiac Output
 • Regional CBF Can Vary Between 20-80 ml/100g Of Brain Tissue/Minute

REGULATION OF CBF

• Arterial CO₂ Tension (PaCO₂)
 • CBF Is Directly Proportional To PaCO₂ Between Tensions Of 20-80 mmHg
 • Blood Flow Changes Approximate 1-2 ml/100g/min Per 1 mmHg Change In PaCO₂
 - Hypocapnia Results In Vasoconstriction And Decreased CBF, CBV And ICP
 - Hypercapnia Increases CBF By 2 ml/100 g Of Brain Tissue For Each Single Torr Increase In PaCO₂

• Arterial O₂ Tension
 • Resistant To Most Changes In PaO₂ Until It Falls Below 50 mmHg
 • Hypoxemia Leads To A Profound Increase In CBF
 • Hyperoxia Is Associated With A Less Than 10% Decrease In CBF

• Mean Arterial Pressure
 • Autoregulation
 • Cerebral Perfusion Pressure (CPP)
REGULATION OF CBF

- **Mean Arterial Pressure**
 - Severe Hypotension Leads To Cerebral Ischemia
 - 20-25 ml/100g/min - cerebral impairment
 - 15-20 ml/100g/min – produce iso-electric EEG
 - Below 10 ml/100g/min - associated with irreversible brain damage

- **Cerebral Perfusion Pressure**
 - CPP=MAP-ICP if ICP > CVP
 - CPP=MAP-CVP if CVP > ICP
 - Normal CPP 80-100 mmHg
 - Decrease in CPP - cerebral vasodilation
 - Increase in CPP - cerebral vasoconstriction
 - Effects of CPP on EEG
 - Lower limit of CPP is 50 mmHg
 - Less than 50 mmHg - slowing EEG
 - Between 25-40 mmHg - flat EEG
 - Less than 25 mmHg - irreversible brain damage

- **INTRACRANIAL PRESSURE**
 - Determined By Contents Of Intracranial Compartment
 - Consists of brain and water-80%
 - Blood-12%
 - CSF-8%
 - Normal ICP In Supine Position 5-15 mmHg
 - Compensatory Mechanisms
 - Displacement of CSF from cranial to spinal compartment
 - Increase in CSF absorption
 - Decrease in CSF production
 - Decreased in CBV

- **INTRACRANIAL COMPLIANCE**
 - Measures The Change In ICP In Response To Changes In Intracranial Volume

- **INTRACRANIAL PRESSURE**
 - Increased ICP
 - Normal Elastance Of Intracranial Contents
 - Without Intracranial Pathology
 - Abnormal Elastance
 - Causes Include
 - Mass Lesions
 - Bleeding
 - CSF Volume
 - Air
 - Foreign Body
INTRACRANIAL COMPLIANCE
• Measures the change in ICP in response to changes in intracranial volume.

INTRACRANIAL PRESSURE
• Increased ICP
 – Normal elastance of intracranial contents
 • Without intracranial pathology
 – Abnormal elastance
 • Causes include
 – Mass lesions
 – Bleeding
 – CSF volume
 – Air
 – Foreign body

INTRACRANIAL HYPERTENSION
• Sustained increase in ICP above 15 mmHg
• Causes
 – Increase in tissue or fluid mass
 – Interference with normal CSF absorption
 – Excessive cerebral blood flow
 – Increase in brain edema from systemic derangement of blood brain barrier
• ICP > 30 mmHg
 – Decrease in CBF
 – Vicious cycle
 • Brain ischemia → brain edema → ↑ ICP → more brain ischemia

SYMPTOMS OF ↑ ICP
• Headache
• Nausea
• Vomiting
• Papilledema
• Focal neurologic deficits
• Cushing’s triad
• Altered consciousness

INTRACRANIAL HYPERTENSION
• Methods of control
 – Decrease the volume of the brain
 • Diuretics
 • Corticosteroids
 – Decrease the volume of blood
 • Hyperventilation
 • Optimized hemodynamics (MAP, CVP, PCWP, HR)
 • Positioning
 • Fluid restriction
 • Temperature control (CBF changes 5-7%/C)
 – Decrease the volume of CSF
 • CSF drainage
 • Surgical decompression

ANESTHETIC MANAGEMENT

INTRACRANIAL MASSES

- **Location**
 - Supratentorial vs. Intratentorial
 - Tentorium—"tent of the cerebellum"

- **Adult Tumors Are Supratentorial**
 - Meningiomas
 - Glioblastomas
 - Neuroblastomas

- **Childhood Tumors Are Infratentorial**
 - Medulloblastomas
 - Cerebellar Astrocytomas
 - Intratentorial Ependymomas
 - Brain Stem Gliomas

- **Primary vs. Metastatic**

STEREOTACTIC NAVIGATION

- **Three Dimensional Imaging**
 - Localizes intracranial point in relation to the computed image, using CT, MRI or angiographic studies

- **Fiducial Markers Indicate Imaging Coordinates**

- **Z-touch laser register used as alternative site marker**

- **Coordinates Of Brain Are Automatically Calibrated To Coordinates Of System**

NEUROLOGIC MONITORING

- **EEG monitoring**
 - Used to monitor balance between oxygen supply and demand in cerebral cortex
 - EEG changes seen when CBF decreases from norm to 20 ml/100g/min

- **Burst suppression**
 - EEG pattern of periods of electrical silence interspersed with brief periods of activity
NEUROLOGIC MONITORING

- **EEG Is Sensitive To All Anesthetics**
- **Volatile Agents Have Dose-dependent Suppressive Effect**
 - < 0.5 MAC – CMRO₂ decreased
 - 1.0 MAC - ↓ frequency and max. voltage
 - Greater than 1 MAC - burst suppression and isoelectricity
 - 2.0 MAC - electrical silence
- **Opioids Have Minimal Effect On EEG And Evoked Potentials**

Evoked Potentials
- **SSEP - Somatosensory Evoked Potential**
 - Most common used nerves
 - Median (wrist)
 - Posterior tibial nerve (ankle)
 - Peroneal nerve (popliteal fossa or below the knee)
- **MEP - Motor Evoked Potential**
 - Assesses Descending Motor Pathways

EP Measurement
- Latency
- Amplitude

- **Effected By Certain Anesthetics**
 - NMR-avoid with use of MEPs
 - Volatile agents decrease amplitude and increase latency
 - N₂O-decreases amplitude
 - Changes in anesthetic depth misinterpreted as change attributed to tissue viability

ANESTHETIC MANAGEMENT: CHOOSING THE RIGHT ANESTHETIC

- **Awake vs. General**
 - Awake Craniotomy
 - Opportunity for brain mapping
 - Preservation of functional status
 - reduction in ICU care
 - shorter hospital stay
 - General Anesthetic
 - Short acting anesthetics provide similar advantages to awake technique

INDUCTION AGENTS

- **Barbiturates**
 - ↓ CBF And CMRO₂
 - Maintains Responsiveness To CO₂ Changes And Autoregulation
 - Provide Protection During Focal But Not Global Ischemia
 - Anticonvulsant Activity
 - Cause Robin Hood Or Reverse Steal Phenomenon
 - Facilitates CSF Absorption
 - Highly Effective In Lowering ICP

- **Propofol**
 - Dose-dependent Reduction In CBF
 - 40-60% Reduction In CMRO₂
 - Autoregulation And Responsiveness To CO₂ Changes Are Maintained
 - Anti-convulsant Effect
 - Reduces Or Has Minimal Effect On ICP
 - More Effective Than Thiopental In Attenuating Rises In MAP, CSF Pressure And CPP During Induction
INDUCTION AGENTS

- **Dexmedetomidine**
 - Selective Alpha₂-adrenoceptor Agonist
 - Slow Onset And Offset
 - Reduces MAC By 50%
 - No Change Or Minimal Decrease In ICP As Long As MAP Is Maintained
 - Does Not Alter Seizure Threshold

- **Etomidate**
 - Depresses CMR, CBF, And ICP
 - Decreases CMR In Cortex > Brainstem
 - Decrease CSF Production And Enhances CSF Absorption
 - Epileptogenic Properties
 - Increases EP Amplitude And Latency

- **Ketamine**
 - Dilates Cerebral Vasculature
 - Causes Marked Increases In CBF And CMRO₂
 - Impedes CSF Absorption

- **Benzodiazepines**
 - Midazolam
 - Drug Of Choice Due To Short Half-life
 - Lower CBF And CMR
 - Anticonvulsant Properties
 - Significant Decreases In CPP
 - Avoid In Elderly & Unstable Patients
 - Prolong Emergence (Renal Failure)

OPIOIDS

- **Minimal Effects On CBF, CMR, And ICP**
- **Sufentanil Can Increase ICP**
- **Morphine Not Considered Optimal In Due To Poor Lipid Solubility**
- **Meperidine Avoided In Renal Failure Patient**

- **Remifentanil**
 - Acid Methyl Structure Susceptible To Esterase Metabolism In Blood And Tissues
 - Rapid Emergence
 - Increased incidence of hypertension
 - Consider transitional narcotics post-op
 - Permits Immediate Postoperative Neurologic Evaluation
 - No Effect On ICP
INHALATIONAL ANESTHETICS

• Produce A Dose-dependent Decrease In Cerebral Metabolic Rate (CMRO₂)
 – Iso >> Des = Sevo
• Up To 50% Reduction In CMR With Isoflurane
• Produces EEG Burst Suppression In Higher Doses

INHALATIONAL ANESTHETICS

• Effect On Autoregulation

INHALATIONAL ANESTHETICS

• Increase In Cerebral Blood Flow (CBF)
 – Isoflurane > Desflurane > Sevoflurane
• Minimal or no effect at 0.5 MAC
• Hyperventilation can blunt the increase in CBF
• Increased ICP In Presence Of Space Occupying Lesions
• All Volatile Anesthetics Increase CBV
• Easy To Monitor End-tidal Concentrations
• N₂O Increases CBF And Increases CMRO₂

INHALATIONAL ANESTHETICS

• Sevoflurane
 • CBF And CMRO₂ Reduced 50% Below 1 MAC
 • Autoregulation And Responsiveness Of CBF To PaCO₂ Preserved
 • Dose Dependent Increase In ICP
 • Decrease In CVR
 • SSEP And EEG Are Suppressed In A Dose-dependent Fashion

INHALATIONAL ANESTHETICS

• Desflurane
 • Rapid Onset And Emergence
 • Decreases CMRO₂
 • At 0.5 MAC, Does Not Increase CBF Or CBV

EFFECTS OF ANESTHETICS ON CEREBRAL PHYSIOLOGY

Table 25-1: Comparative effects of anesthetic agents on cerebral physiology.

<table>
<thead>
<tr>
<th>Agent</th>
<th>CMR</th>
<th>CBF</th>
<th>CBF Production</th>
<th>CBF Consumption</th>
<th>CBV</th>
<th>ICP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halothane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Isoflurane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sevoflurane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ketamine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Propofol</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Remifentanil</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Desflurane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sevoflurane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

T = increase, L = decrease, + = definite change, − = unknown; CBF = cerebral blood flow, CBV = cerebral blood volume, CMR = cerebral metabolic rate, CVR = cerebral vascular resistance, PaCO₂ = partial pressure of carbon dioxide.
MUSCLE RELAXANTS

- Succinylcholine Increases ICP
- Non-depolarizers Have No Clinically Significant Effects On CBF And CMRO₂
- Chronic Anticonvulsant Therapy - shortened Duration Of Action Of NDMR

THE FAST-TRACK APPROACH TO NEUROANESTHESIA

PRE-OPERATIVE ASSESSMENT

- Neurological Assessment Prior To OR
- Pre-operative Meds
 - Sedatives And Opioids Avoided
 - Steroids
 - Reduce cerebral edema
 - DO NOT improve outcome or lower ICP in face of head injury
 - Complications include hyperglycemia, infection, GI bleeding

PRE-OPERATIVE ASSESSMENT

- Anti-epileptic Drugs
 - Dilantin (Phenytoin)
 - Cerebyx (Fosphenytoin)
 - Keppra (Levetiracetam)

PRE-OPERATIVE ASSESSMENT

- Anti-epileptic Drugs
 - Dilantin (Phenytoin)
 - Infusion-related adverse reactions due to the sodium hydroxide, propylene glycol and alcohol content of the intravenous formulation
 - Extravasation reported when large doses of undiluted phenoxytin are given through a small-bore catheter in a peripheral vein
 - Hypotension and arrhythmias related to rapid administration (> 50 mg/minute) rates
 - Cerebyx (Fosphenytoin)
 - Water-soluble prodrug of phenytoin that is associated with fewer infusion-related events

PRE-OPERATIVE ASSESSMENT

- Anti-epileptic Drugs
 - Keppra (Levetiracetam)
 - Devoid of cardio-toxic effects
 - Acts by binding to synaptic plasma membrane in CNS
 - Inhibits burst firing without effecting normal neuronal excitability
 - Loading dose-1 gm/24 hours
Awake Craniotomy Technique

Pre-operative Period
- Dexmedetomidine - 200 mcg/50 cc
 - Front load 1 mcg/kg over 10 min
 - Infuse at 0.6 mcg/kg/hr
- Scalp nerve block - Ropivacaine 0.5% 30 ml
 - Supraorbital
 - Supratrochlear
 - Auriculotemporal
 - Lesser occipital and greater occipital nerves

Intraoperative Period
- Maintain Dexmedetomidine infusion
- Remifentanil 1 mg/40 cc
 - Infuse at 0.03 mcg/kg/min

MONITORING
- Standard Monitors Plus Arterial Line
 - Permits beat to beat monitoring, extrapolation of data to determine CPP
- Central Venous Line
 - Subclavian approach preferred
 - Indirect correlation of ICP in determination of CPP
 - Central route for vasoactive drugs

POSITIONING
- Positioned In Head Up Position, Either Supine, Lateral Or Prone
- HOB 30 degrees
 - Promotes gravitational drainage of blood and CSF
- Sitting Craniotomies Avoided Unless Access Is Not Possible

INDUCTION
- Remifentanil - 0.25 ug/kg
- Propofol 1.2 mg/kg
- Rocuronium 0.6 mg/kg
- Tracheal Intubation With Reinforced Tube

MAINTENANCE
- Remifentanil Infusion - 0.125 ug/kg/min
- Rocuronium Infusion - 6-8 ug/kg/min
 - Based on train of four response
 - Not utilized during MEP monitoring
- Desflurane - 0.5 MAC
- If MEP Monitoring Is Used
 - Consider not using volatile agents
 - Propofol infusion 100 ug/kg/min
 - No muscle relaxants after induction dose
- Hyperventilation
 - 25-30 mmHg
 - If ICP is elevated, 20-25 mmHg

IDEAL CHARACTERISTICS OF ANESTHETIC DRUGS
- Allow Rapid Onset And Rapid Emergence
- Maintain Hemodynamic Stability
- Not Increase Cerebral Blood Flow (CBF)
- Decrease Cerebral Blood Volume (CBV)
- Decrease Intracranial Pressure
- Maintain CO2 Reactivity
- Maintain Cerebral Autoregulation
- Allow For Neuropysilologic Monitoring Of EP And EEG
- Does Not Increase Cerebral Metabolic Rate (CMR)
- Has Anti-convulsant Properties
- Decreases Cerebral Edema
- Protects The Brain From Ischemia
PERIOPERATIVE HYPERTENSION

• Occurrence
 – Intubation
 – Injection of Epinephrine Containing Solutions
 – Stimulation
 • Pin Placement,
 • Incision and Opening of the Bone and Dura
 – Emergence

• Vasoactive Modulators
 – Epinephrine, norepinephrine, aldosterone, and cortisol,
 – Elevated in the absence of hypertension

MANAGEMENT OF PERIOPERATIVE HYPERTENSION

• Remifentanil 200ug With Pin Placement
• Hydralazine, 10 Mg - 20 Minutes Before the End Of The Procedure
• Supplemented With Labetalol 5-10 mg Following The Discontinuation Of Remifentanil

EMERGENCE

• Ondansatron – 4mg
• Rocuronium Infusion Discontinued Prior To Scalp Closure
• Propofol Infusion Discontinued Following Closure Of Scalp
 – Small Amount Of Accumulation
• Remifentanil And Desflurane (If Utilized) Discontinued Prior To Removal Of Pins
• Transported To CT Scan 20 Minutes After Awakening And Arrival In PACU