Anesthetic Considerations For Robotic Surgery

Warning Will Robinson, Warning

Bruce Weiner, DNP, MSNA, CRNA Tampa, FL

Learner Outcomes

- I. Discuss the history of robotic surgery.
- 2. Summarize the pathophysiologic effects of positioning and pneumoperitoneum for robotic surgery.
- 3. Summarize the peri-operative anesthetic management for robotic surgery.
- 4. Discuss procedure specific anesthesia-related complications related to robotic surgery.

Robots

Definition

- Describes an autonomous device capable of various tasks
- Industrial robots
- Stereotactic navigation assist device.
- Telemanipulators

History

- Nasa Developed Robots For Space
- Telemanipulators Capable Of Doing Manual Tasks
 - Slave Devices Were Controlled Electronically From A Remote Console
- Dexterous Telemanipulators For Surgical Use

History

- Department Of Defense Investigates Robots For Treating Battlefield Wounded
- Latency Of The Signal Over Distance Limited Its Effectiveness
- 1985-First Surgical Application Using Modified Industrial Robotic Arm

Laparoscopy

Phillipe Mouret - 1987

• First Video Laparoscopic Cholecystecomy

Advantages

- Reduced Tissue Trauma
- Reduced Postoperative Pain
- More Rapid Recovery
- Shorter Hospital Stay
- Improved Patient Satisfaction

Robodoc-1992

- Used In Orthopedics
- Fulcrum Effect
 - Non-Intuitive Motion
 Of The Instrument Tips

 In Opposite Direction

 About A Fixed Point

Aesop And Tiska Endoarm

1994

Development of Active Robotics

- Overcoming Dexterity Problems
- Development Of Manipulators That Mimick Hand Movements
- Development Of Three Dimensional Video Imaging, Robot Camera Holders And Robotic Flexible Instrumentation
- Ability For Tactile Pressure Sensation

Two Robotic Systems

da Vinci

Zeus

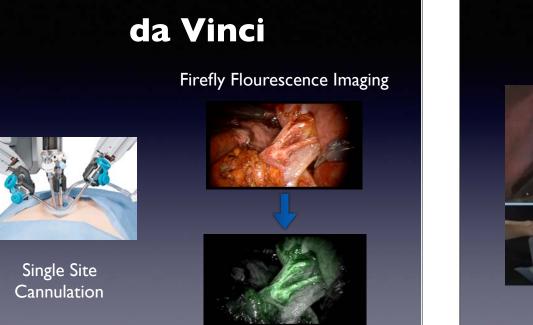
First Robotic-Assisted Surgical Procedure April 1997

Jacques Himpens

Guy Cardiere

da Vinci Systems

da Vinci S

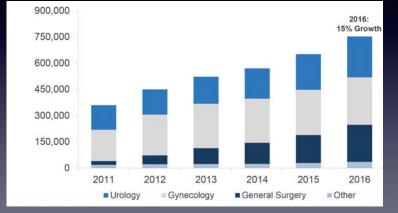


da Vinci Xi

da Vinci Si

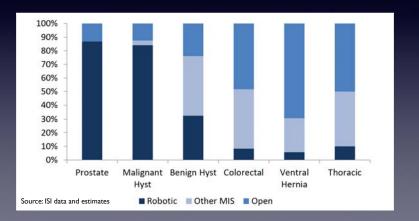
The da Vinci Robotic Surgical System

On The Horizon



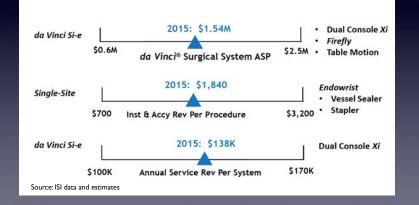
da Vinci Sp (Investigational Trials)

How Big Is Robotics?



Utilization

Source: ISI data and estimate


Robotics and Procedure Type

Advantages of Robotic Surgery

- Magnified 3D Vision
- Digitalized Hand Movements
- Superior Maneuverability Of Robotic Instruments
- Safety System Prevents Un-Attended Movement Of Arms

Cost To The Institution

Disadvantages Of Robotic Surgery

- Bulky, Large Equipment
- Costly
- Instrumentation Has Finite Life
 Of Ten Procedures
- Invasion Of Anesthetic Work Space
- Loss Of Tactile Feedback
- Requires Staff Training

Initiating A Robotic Program

- Major Financial Outlay And Recurring Cost
- Surgical Growth Potential And Recognition Offsets The Cost Of The Program
- Teamwork Is Essential To Success
- Challenges Include
 - Increased Operating Time
 - Surgical Learning Curve

Procedures Performed Using Robotics

Urologic Procedures Include

- Pyeloplasty
- Cystectomy With Diversion
- Adrenalectomy
- Radical And Partial Nephrectomy
- Radical Prostatectomy

Prostate Cancer

- Affects 235,000 Annually
- Death Rate Approximates 12%
- Treatment Options Include:
 - Radiation
 - Observation
 - Surgery

Radical Prostatectomy

- Changes Quality Of Life
- Discourages Treatment
- Complications From Damage To Urinary Sphincter And Penile Nerve
- Minimally Invasive Technique
 - Nerve-Sparing Technique
 - Has Increased Patient Acceptance
 - Allows More Rapid Discharge

Procedures Performed Using Robotics

- Gi Procedures
 - Cholecystectomy
 - Gastrectomy, Gastric Bypass, Pancreatoduodenectomy
- Colon Resection
- Thoracic
 - Lobectomy And Wedge Resection
 - Esophagectomy
 - Thymectomy
- Cardiac
 - Coronary Bypass Graft
 - Atrial Septal Defect Repair
 - Mitral Valve Replacement
- Thyroidectomy
- Orthopedics
- Ophthalmology
- ENT

Differences Between Robotic And Laparoscopic Surgery

- Challenges To Patient Access
- Securing And Preventing Patient Movement
- Importance Of Adequate Muscle Relaxation

Anesthesia Considerations

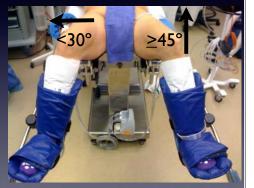
- Patient Positioning
- Hemodynamic And Respiratory Effects Of Pneumoperitoneum
- Duration Of Procedure
- Spatial Restrictions Due To Equipment
- Possibility Of Unsuspected Visceral
 Injury Or Blood Loss
- Development Of Hypothermia

Positioning

- Robot May Be Positioned At The Foot, Side Or Over To Head
- Once Robot Is Engaged, Bed And Patient Position Cannot Be Changed
- Protect The Patient From Pressure And Crush Injuries From Robotic Arms

Protecting Your Patient From Nerve Injury

- 2.7% Incidence Of Neuromuscular Injury Annually
 - Radial And Ulnar Nerves
 - Brachial Plexus
 - Sciatic Nerve
 - Obturator Nerve
 - Peroneal Nerve
 - Lateral Femoral Cutaneous Nerve
- Pad All Areas
- Patient Strapped With Chest Binding In X Pattern


Positioning In Trendelenburg

- Protective Mat Placed Under Patient To Minimize Slipping And Provide Padding
- Bean Bag Is An Option But Rarely Used
- Avoid Use Of Shoulder Braces

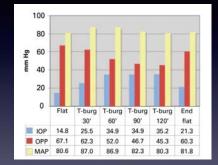
Positioning In Lithotomy

- Goal Is To Minimize Hip Abduction And Maximize Flexion To Accommodate Robot Arms
- Cushioned Stirrups
- Arms And Hands Padded And Tucked
- Ensure Iv Access And Functional Monitoring Ability
- Only Opportunity To Gain Access For Ivs And Invasive Monitors Is Before Docking

Positioning In Lateral Position

- Axillary Roll Placed
- Kidney Rest Positioned Over Iliac Crest
 - Prevents Lung Splinting And Atelectasis
- Plan On Variations Of Trendelenburg Or Reverse Trendelenburg

Effects Of Trendelenburg


Pulmonary Effects of Trendelenburg

- Abdominal Contents Push Diaphragm Cephalad
- Increased Pulmonary Blood Content And Gravitational Force On Mediastinal Structures
- Swelling Of Face, Eyelids, Conjunctivae, And Tongue
 - Pharyngeal And Laryngeal Edema Is Possible

Cardiovascular Effects of Trendelenburg

- Increased CVP, Myocardial Work And Pulmonary Vascular Resistance
- Increased SV, CO
- Map Unchanged Or Slightly Increased
- Increased Cerebral Venous Pressure
 - Decrease In CBF

IOP and **Trendelenberg**

• Dorzolamide Hydrochloride And Timolol Maleate (Cosopt) Reduced Elevated Iop During Steep Trendelenberg

Molloy, B. AANA Journal, Apr. 2011; Jun 2014

Effects Of Pneumoperitoneum

- Well Tolerated By Health Individuals
- Myriad Of Issues
 - Cardiovascular Effects
 - Pulmonary Effects

Cardiovascular Effects Of Pneumoperitoneum

- Increase In Intraabdominal Pressure Causes:
 - Compression Of Vena Cava
 - Increase In SVR, MAP, HR, PVR
 - Increase In CVP, PCWP, PAP
 - Decrease In SV, CO, CI
- Pronounced In Patients With Pre-Existing Disease

Pulmonary Effects Of Pneumoperitoneum

- Elevation Of Diaphragm
- Decreased Frc
- Peak Pressure, Plateau Pressure And Intrathoracic Pressure Increase By More Than 50%
- Decreased Compliance Up To 68%
- V-Q Mismatch
- Pulmonary Shunting
- Co2 Absorption Hypercarbia And Acidosis Corrected With Ventilation

Comparative Effects

Trendelenburg	Pneumoperitoneum
↑ SV	↓ SV
↑ CO	↓ CO
↑ CVP	↑ CVP
± MAP or slightly ↑	↑ MAP
↓ FRC	↓ FRC
↓ Compliance	↓ Compliance
↓ CBF, ICP	↑ CBF, ICP

Combined Effects Of Pneumoperitoneum And Trendelenburg

- MAP Decreased 17%
- HR Decreased 21%
- CO Decreased 10-30%
- 27% Of Patients Experience Dysrhythmias

Hepatic Effects Of Pneumoperitoneum

- Decreased Portal Vein Flow
- Decreased Hepatic Vein Flow
- Decreased Total Hepatic Blood Flow And Flow Through Hepatic Microcirculation
- No Change In Hepatic Arterial Flow

GI And Renal Effects Of Pneumoperitoneum

- Decreased Gastric PH
- Decreased Mesenteric Blood Flow And Microcirculation
- Decreased Renal Blood Flood

CNS Effects Of Pneumoperitoneum

- Increased CBF
- Increased ICP
- Decreased CPP

Complications Of Pneumoperitoneum

- Subcutaneous Emphysema
- Pneumothorax
- Cephalad Shift Of Diaphragm
- Venous Gas Embolism

Venous Gas Embolism

Caused By Rapid Insufflation Into Vessel

- Mill-Wheel Murmur
- Нурохіа
- Decreased CO²
- Cyanosis
- Sudden Cardiac Collapse

Treatment

- Removal Of Pneumoperitoneum
- Hyperventilation With Oxygen
- Left Lateral Decubitus And Trendelenburg Position
- Aspiration Of Air Via CVP

Anesthesia Management

- Everyone Is Not A Candidate
- Proper Screening Will Minimize Complications Of Positioning And Pneumoperitoneum

Pre-Operative Evaluation

- Optimization Of Cardiorespiratory And Metabolic System
- Discontinuation Of Anti-Coagulants
- Identify Past History Of Abdominal Surgery
- Document Pre-Existing Nerve Injury

Obesity And Robotics

- Predisposed To HTN, CAD, DM
- Challenge On Pulmonary Physiology
- Hindrance On Diaphragmatic Movement
- Difficulty Achieving Minute Ventilation

Intra-Operative Management

- No Specific Technique Or Drug Preference
- Standard Monitors
 - Consider Arterial Line Placement
- Regional Anesthesia Not Indicated

Ventilation

- Increase In Airway Pressures
 - Augmented In Patients With Restrictive Or Obstructive Disease
- Utilize Pressure Controlled Ventilation Provides Better Ventilation And Lower Peak Airway Pressures Over Volume Control Mode

Muscle Relaxation

- Complete Muscle Relaxation Is Essential
- Spontaneously Breathing Diaphragm Causes Abdominal Contents To Move
- Facilitates Ease Of Mechanical Ventilation
- Facilitates Introduction Of Surgical Equipment
- Eases Creation Of Pneumoperitonium
- Consider Using Continuous Infusion

Special Considerations

Anesthetic Considerations For Robotic-Assisted Thoracoscopy

- Same Principles Apply As Thoracoscopic Surgery
- Improved Patient Outcome
- Selection Criteria Limited
- Side Cart Is Positioned Close To Head
- Limited Access To Airway And Neck

Anesthetic Considerations For Robotic-Assisted Thoracoscopy

- Insufflation Of Co² In The Chest Increases Airway Pressures
- Venous Return And Compliance Of Heart Decreases Resulting In:
 - Hypotension And Hemodynamic Instability
 - Dependent Lung Develops Higher Airway Pressures
- CO₂ Rapidly Absorbed

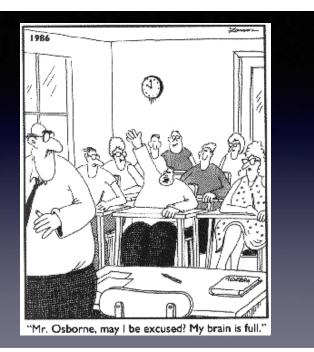
Anesthetic Considerations For Robotic-Assisted Thoracoscopy

- One Lung Ventilation And Manipulation Alter Ventilation And Perfusion
- Lateral Position Reduces Shunting To Non-Dependent Lung
- Pulmonary Shunting In Non-Ventilated Lung Limited By HPV

Complications Of Thoracic Insufflation

- Emergency Conversion To Open Procedure
- Contra-Lateral Pleural Can Be Violated Creating Tension Pneumothorax In Dependent Chest
 - CO₂ Discontinued To Alleviate Tension Pneumothorax

Gynecologic Surgery


- Marked Improvement Over Laparoscopic Procedures
- Improved Micro-Surgical Techniques

Fluids

- Minimizes Facial Edema
- Restricted To Prevent Obscuring Surgical Field During Resection Of Bladder Neck
- Restoration Of Volume Possible After Return To Supine Position

Summary

- Learning Curve For The Surgeon
- Positioning And Pneumoperitoneum Provide A Great Challenge
- Robotics Gives New Meaning To Field Avoidance
- Patient Satisfaction And Surgical Outcomes High
- Much More Lies Over The Horizon

